Why trust in the SAACKE EGCS?

As a company with decades of experience in the market, all our activities are based on four main principles that offer you key benefits.

Reliability
- First EGCS approved by DNV-GL has been running reliably since 2014
- Best choice of raw materials and sensors that guarantee durable corrosion resistance and a complete supply of spare parts which avoids non-compliance issues
- Experienced and efficient project management guarantees a smooth EGCS integration
- Service Stations in more than 20 countries and 70 international branches around the globe

Green Ship Technology
- A ship sailing with HFO in conjunction with a SAACKE EGSC has a lower CO₂ footprint than a ship sailing on compliant fuel (≤0.5% Sulphur) and therefore produces less greenhouse gases
- The SAACKE EGCS can reduce the emission of soot by up to 80% and thus minimizes the coverage of ice and snow with black carbon, which accelerates the melting of glaciers and the polar ice shelf
- In general, this technology allows a lower potential for acid rain and lung diseases

Smartness
- All plants are controlled by SAACKE se@vis HMI, incl. data transfer via cloud solution to shore
- NEW: fleet cockpit „the traffic light“ gives an immediate overview. One click and the cockpit displays all engine loads, sensor values, alarm history and position of the vessel during the recent voyage (all our installations are fleet cockpit ready)

Innovation
- Numerous innovations for the marine sector like the H₂ Gas Combustion Unit, flue gas recirculation and LNG DF applications
- SAACKE is in charge of the BMWI funded research project SAARUS and together with research and industry partners, aims to further minimize the emission of ultra-fine particles of < 10µm

Production sites

- **Germany – Bremen**
 In addition to being the manufacturing center for burners, electronic control equipment and other components, the development and test center is also located here at the company headquarters.

- **Croatia – Zagreb**
 Our plant here specializes in boiler and steel construction as well as design and manufacturing.

- **PR of China – Qingdao**
 The main focus of our Asian SAACKE production center is boiler and steel construction together with module production.

Hybrid Multistream Scrubber System

Our references and projects around the world
The SAACKE scrubber EGCS-HM fully satisfies IMO regulation MEPC.259(68) and complies with 0.1% and 0.5% emission criteria. In addition to monitoring the live emission data on-site via EGCS management, it is also available for the operator onshore thanks to SAACKE’s innovative emission monitoring solutions. As demonstrated by several installations, the scrubber has a short payback period and is the ideal investment for both retrofits and newbuilds. Our worldwide projects and plants stand for the high degree of trust in “Quality Made by SAACKE” across all borders and various renowned ship owners.

Cleaning capacity
- Up to 30 MW (U-type-tower)

SOX removal rate
- Up to 99%

Modes of operation
- Open-Loop
- Closed-Loop
- Hybrid mode

Exemplary overview: operators of SAACKE EGCS*

All SAACKE scrubber installations are fleet cockpit ready

<table>
<thead>
<tr>
<th>Yard Name</th>
<th>Owner</th>
<th>Owner Country</th>
<th>Number of Plants</th>
<th>Hull No / Name</th>
<th>Ship Type</th>
<th>Customer Country (mostly the Yard)</th>
<th>Total Engine Power installed (MW)</th>
<th>Exhaust Gas Load (%)</th>
<th>Plant Size</th>
<th>Execution</th>
<th>Commissioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santender Naval Constanta S.A.</td>
<td>Ionic</td>
<td>Greece</td>
<td>2</td>
<td>Anassa, Althea</td>
<td>DCT</td>
<td>Greece</td>
<td>14</td>
<td>94,1</td>
<td>OM 3700</td>
<td>open loop</td>
<td>all accomplished</td>
</tr>
<tr>
<td>KHI Kobe</td>
<td>Tokei Kaisen</td>
<td>Japan</td>
<td>1</td>
<td>22 N 1740</td>
<td>61k BC</td>
<td>Japan</td>
<td>10,6</td>
<td>69,2</td>
<td>OM 3200</td>
<td>open loop</td>
<td>March -- 2020</td>
</tr>
<tr>
<td>Shanhaijiao</td>
<td>ELCANO</td>
<td>Spain</td>
<td>1</td>
<td>CT307-01</td>
<td>37000CT</td>
<td>China</td>
<td>16,6</td>
<td>65,2</td>
<td>HM 3200</td>
<td>hybrid</td>
<td>accomplished</td>
</tr>
<tr>
<td>Yangzijiang</td>
<td>Mangrove</td>
<td>USA</td>
<td>6</td>
<td>YJZ005-2155 - 2158 / 2159 / 2160 / 2163 / 2166</td>
<td>208k BC</td>
<td>China</td>
<td>18,4</td>
<td>118,6</td>
<td>OM 4200</td>
<td>open loop</td>
<td>2 accomplished, Jun., Aug. & Dec. -- 2020</td>
</tr>
<tr>
<td>Nantong Xiangyu</td>
<td>Daen Kisen</td>
<td>Japan</td>
<td>1</td>
<td>ZZ015, ZZ086, ZZ088, ZZ095, ZZ096, ZZ099</td>
<td>63,500BC - 82,000BC</td>
<td>China</td>
<td>9,7 - 12,3</td>
<td>59,9 - 92,9</td>
<td>OM 3200</td>
<td>open loop</td>
<td>Mar. - Sep. -- 2020</td>
</tr>
<tr>
<td>Nantong Xiangyu</td>
<td>NISSHN</td>
<td>Japan</td>
<td>2</td>
<td>ZZ048, ZZ086</td>
<td>63,500BC</td>
<td>China</td>
<td>9,7</td>
<td>59,9</td>
<td>OM 3204</td>
<td>open loop</td>
<td>Dec. -- 2019, Feb. -- 2020</td>
</tr>
<tr>
<td>CHI Yangzhou</td>
<td>COSCO/ICBC</td>
<td>China</td>
<td>2</td>
<td>NY45, NY46</td>
<td>208k BC</td>
<td>China</td>
<td>19,3</td>
<td>111,7</td>
<td>OM 4200</td>
<td>open loop</td>
<td>Feb. -- 2020</td>
</tr>
<tr>
<td>Tianjing Xinjiang</td>
<td>Vale/CSCQ</td>
<td>China</td>
<td>4</td>
<td>NB018-1, -2, -3, -4</td>
<td>325k VLOC</td>
<td>China</td>
<td>16</td>
<td>169,6</td>
<td>OM 5000</td>
<td>open loop</td>
<td>Apr.-Dec. -- 2020</td>
</tr>
<tr>
<td>Yangzijiang</td>
<td>Navibuglar</td>
<td>Bulgaria</td>
<td>2</td>
<td>YJZ005-2300, -2307</td>
<td>45,000 BC</td>
<td>China</td>
<td>9</td>
<td>50,2</td>
<td>OM 2400</td>
<td>open loop</td>
<td>Mar.-Apr. -- 2020</td>
</tr>
<tr>
<td>Nantong SY</td>
<td>C. Buettner</td>
<td>Germany</td>
<td>4</td>
<td>HT-CT38-009, -010, -013, -014</td>
<td>38.000 CT</td>
<td>China</td>
<td>9,7</td>
<td>57,6</td>
<td>HM 2400</td>
<td>hybrid</td>
<td>2 accomplished, Jan. & Feb. -- 2020</td>
</tr>
<tr>
<td>BREDD</td>
<td>C. Buettner</td>
<td>Germany</td>
<td>1</td>
<td>Lernas</td>
<td>14.000 CT</td>
<td>Germany</td>
<td>8,25</td>
<td>43,8</td>
<td>HM 2400</td>
<td>hybrid</td>
<td>accomplished Jul. -- 2014</td>
</tr>
<tr>
<td>NACKS</td>
<td>Mitsuji Kaisen</td>
<td>Japan</td>
<td>1</td>
<td>NE 304</td>
<td>82k BC</td>
<td>China</td>
<td>12,3</td>
<td>97,9</td>
<td>OM 3700</td>
<td>open loop</td>
<td>Apr. -- 2020</td>
</tr>
<tr>
<td>NACKS</td>
<td>Kumsai Nav.</td>
<td>Singapore</td>
<td>1</td>
<td>NE 340</td>
<td>82k BC</td>
<td>China</td>
<td>12,3</td>
<td>97,9</td>
<td>OM 3700</td>
<td>open loop</td>
<td>Feb. -- 2021</td>
</tr>
<tr>
<td>CHI</td>
<td>China Ore - Valemax 2G</td>
<td>China</td>
<td>10</td>
<td>H1438-H1444, H1445-H1451</td>
<td>400k BC</td>
<td>China</td>
<td>28,2</td>
<td>211,6</td>
<td>OM 5300</td>
<td>open loop</td>
<td>1 accomplished, Jun. -- 2020 until Feb. -- 2021</td>
</tr>
</tbody>
</table>

Total: 43